Ï㽶ÊÓƵ

Skip to main content
Aylin R. Rodan
No Rating Available
(Learn About Our Rating System)

Aylin R. Rodan, MD, PhD, FASN

Languages spoken: English

Clinical Locations

Kidney & Liver Clinic

Kidney and Liver Clinic
Salt Lake City
801-581-2772
  • Dr. Rodan received her undergraduate degree in Biology from Yale Ï㽶ÊÓƵ. She then completed M.D./Ph.D. training in the Medical Scientist Training Program at the Ï㽶ÊÓƵ of California San Francisco, followed by Internal Medicine residency at UCSF. She completed a postdoctoral fellowship and nephrology subspecialty training at the Ï㽶ÊÓƵ of Texas Southwestern Medical Center, where she remained on faculty for five years prior to coming to the Ï㽶ÊÓƵ of Utah. Dr. Rodan is a general nephrologist specializing in disorders of the kidney, electrolytes and high blood pressure. She oversees Nephrology Fellows in training in the outpatient and inpatient settings.

    The kidney plays a central role in maintaining homeostasis of ions and water in the body. However, the diet of early humans (low sodium, high potassium) is the opposite of the modern diet (high sodium, low potassium). The Rodan laboratory is interested in how the kidney responds to the high sodium, low potasium diet in ways that are both adaptive and maladaptive. Underlying the kidneys' ability to regulate salt and water is the process of ion transport, the vectorial movement of ions across cell membranes. The Rodan laboratory uses the genetic model organism Drosophila melanogaster to study ion transport processes relevant to human physiology. Projects in the lab focus on: 1) ion and water sensing by WNK kinases, which are mutated in a human disorder characterized by high blood pressure and high potassium; and 2) understanding how flies respond to high salt diet, including genes and metabolic adaptations that increase or decrease the ability to cope with high salt. The goal of the laboratory is to understand the regulatory and ion transport mechanisms underlying the response to varying diets and to translate these insights into improved understanding of renal physiology in health and disease.

    Board Certification

    American Board of Internal Medicine
    American Board of Internal Medicine (Sub: Nephrology)
  • Dr. Rodan received her undergraduate degree in Biology from Yale Ï㽶ÊÓƵ. She then completed M.D./Ph.D. training in the Medical Scientist Training Program at the Ï㽶ÊÓƵ of California San Francisco, followed by Internal Medicine residency at UCSF. She completed a postdoctoral fellowship and nephrology subspecialty training at the Ï㽶ÊÓƵ of Texas Southwestern Medical Center, where she remained on faculty for five years prior to coming to the Ï㽶ÊÓƵ of Utah. Dr. Rodan is a general nephrologist specializing in disorders of the kidney, electrolytes and high blood pressure. She oversees Nephrology Fellows in training in the outpatient and inpatient settings.

    The kidney plays a central role in maintaining homeostasis of ions and water in the body. However, the diet of early humans (low sodium, high potassium) is the opposite of the modern diet (high sodium, low potassium). The Rodan laboratory is interested in how the kidney responds to the high sodium, low potasium diet in ways that are both adaptive and maladaptive. Underlying the kidneys' ability to regulate salt and water is the process of ion transport, the vectorial movement of ions across cell membranes. The Rodan laboratory uses the genetic model organism Drosophila melanogaster to study ion transport processes relevant to human physiology. Projects in the lab focus on: 1) ion and water sensing by WNK kinases, which are mutated in a human disorder characterized by high blood pressure and high potassium; and 2) understanding how flies respond to high salt diet, including genes and metabolic adaptations that increase or decrease the ability to cope with high salt. The goal of the laboratory is to understand the regulatory and ion transport mechanisms underlying the response to varying diets and to translate these insights into improved understanding of renal physiology in health and disease.

    Board Certification and Academic Information

    Academic Departments Internal Medicine -Primary
    Human Genetics -Adjunct
    Academic Divisions Nephrology & Hypertension
    Board Certification
    American Board of Internal Medicine
    American Board of Internal Medicine (Sub: Nephrology)

    Education history

    Research Fellow NIH/NIDDK Nephrology T32 Training Program - Ï㽶ÊÓƵ of Texas Southwestern Medical Center Postdoctoral Research Fellow
    Nephrology - Ï㽶ÊÓƵ of Texas Southwestern Medical Center Fellow
    Postdoctoral Fellowship Genetics - Ï㽶ÊÓƵ of Texas Southwestern Medical Center Postdoctoral Fellow
    Internal Medicine - Ï㽶ÊÓƵ of California, San Francisco Resident
    Doctoral Training Genetics/Medical Scientist Training Program - Ï㽶ÊÓƵ of California, San Francisco Ph.D.
    Medicine/Medical Scientist Training Program - Ï㽶ÊÓƵ of California, San Francisco M.D.
    Undergraduate Biology - Yale Ï㽶ÊÓƵ B.S.

    Selected Publications

    Journal Article

    1. Rodan AR (2024). WNKs and Sodium Transporter Function in Solute Exchange with Implications for Blood Pressure Regulation as Elucidated through Drosophila. Kidney360. ()
    2. Mahmoudzadeh NH, Heidarian Y, Tourigny JP, Fitt AJ, Beebe K, Li H, Luhur A, Buddika K, Mungcal L, Kundu A, Policastro RA, Brinkley GJ, Zentner GE, Nemkov T, Pepin R, Chawla G, Sudarshan S, Rodan AR, DAlessandro A, Tennessen JM (2024). Renal L-2-hydroxyglutarate dehydrogenase activity promotes hypoxia tolerance and mitochondrial metabolism in Drosophila melanogaster. Mol Metab, 102013. ()
    3. Boyd-Shiwarski CR, Rodan AR (2024). Solitary Kidney Seeks Potassium Alkali to Lower the Pressure. J Am Soc Nephrol. ()
    4. Nicholson RJ, Ramkumar N, Rodan AR (2024). Megalin as a Metabolic Modulator in the Kidney and Beyond. Function (Oxf), 5(5). ()
    5. Agarwal A, Beddhu S, Boucher R, Rao V, Ramkumar N, Rodan AR, Fang J, Wynne BM, Drakos SG, Hanff T, Cheung AK, Fang JC (2024). Evaluation of renal sodium handling in heart failure with preserved ejection fraction: A pilot study. Physiol Rep, 12(9), e16033. ()
    6. Merrill CB, Titos I, Pabon MA, Montgomery AB, Rodan AR, Rothenfluh A (2024). Iterative assay for transposase-accessible chromatin by sequencing to isolate functionally relevant neuronal subtypes. Sci Adv, 10(13), eadi4393. ()
    7. Chvilicek MM, Seguin A, Lathen DR, Titos I, Cummins-Beebee PN, Pabon MA, Mievi M, Nickel E, Merrill CB, Rodan AR, Rothenfluh A (2024). Large analysis of genetic manipulations reveals an inverse correlation between initial alcohol resistance and rapid tolerance phenotypes. Genes Brain Behav, 23(1), e12884. ()
    8. Yarikipati P, Jonusaite S, Pleinis JM, Dominicci Cotto C, Sanchez-Hernandez D, Morrison DE, Goyal S, Schellinger J, Pnalva C, Curtiss J, Rodan AR, Jenny A (2023). Unanticipated domain requirements for Drosophila Wnk kinase in vivo. PLoS Genet, 19(10), e1010975. ()
    9. Humphreys JM, Teixeira LR, Akella R, He H, Kannangara AR, Sekulski K, Pleinis J, Liwocha J, Jiou J, Servage KA, Orth K, Joachimiak L, Rizo J, Cobb MH, Brautigam CA, Rodan AR, Goldsmith EJ (2023). Hydrostatic Pressure Sensing by WNK kinases. Mol Biol Cell, 34(11), ar109. ()
    10. Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, Morrison DE, Wang J, Mann J, Tennant W, Anderson EN, Franks J, Calderon M, Connolly KA, Cheema MU, Weaver CJ, Nkashama LJ, Weckerly CC, Querry KE, Pandey UB, Donnelly CJ, Sun D, Rodan AR, Subramanya AR (2022). WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell, 185, 4488-4506.e20. ()
    11. Ilori TO, Liu J, Rodan AR, Verma A, Mills KT, He J, Winkler CA, Dupuis J, Anderson CAM, Waikar SS (2022). Apolipoprotein L1 Genotypes and the Association of Urinary Potassium Excretion with CKD Progression. Clin J Am Soc Nephrol, 17(10), 1477-1486. ()
    12. Merrill CB, Montgomery AB, Pabon MA, Shabalin AA, Rodan AR, Rothenfluh A (2022). Harnessing changes in open chromatin determined by ATAC-seq to generate insulin-responsive reporter constructs. BMC Genomics, 23(1), 399. ()
    13. Balderas E, Eberhardt DR, Lee S, Pleinis JM, Sommakia S, Balynas AM, Yin X, Parker MC, Maguire CT, Cho S, Szulik MW, Bakhtina A, Bia RD, Friederich MW, Locke TM, Van Hove JLK, Drakos SG, Sancak Y, Tristani-Firouzi M, Franklin S, Rodan AR, Chaudhuri D (2022). Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment. Nat Commun, 13(1), 2769. ()
    14. Merrill CB, Pabon MA, Montgomery AB, Rodan AR, Rothenfluh A (2022). Optimized assay for transposase-accessible chromatin by sequencing (ATAC-seq) library preparation from adult Drosophila melanogaster neurons. Sci Rep, 12(1), 6043. ()
    15. Schellinger JN, Sun Q, Pleinis JM, An SW, Hu J, Mercenne G, Titos I, Huang CL, Rothenfluh A, Rodan AR (2022). Chloride oscillation in pacemaker neurons regulates circadian rhythms through a chloride-sensing WNK kinase signaling cascade. Curr Biol, 32(6), 1429-1438.e6. ()
    16. Jonusaite S, Rodan AR (2021). Molecular basis for epithelial morphogenesis and ion transport in the Malpighian tubule. Curr Opin Insect Sci, 47, 7-11. ()
    17. Hyndman KA, Isaeva E, Palygin O, Mendoza LD, Rodan AR, Staruschenko A, Pollock JS (2021). Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis. Physiol Rep, 9(20), e15080. ()
    18. Al-Rabadi LF, Caza T, Trivin-Avillach C, Rodan AR, Andeen N, Hayashi N, Williams B, Revelo MP, Clayton F, Abraham J, Lin E, Liou W, Zou CJ, Ramkumar N, Cummins T, Wilkey DW, Kawalit I, Herzog C, Storey A, Edmondson R, Sjoberg R, Yang T, Chien J, Merchant M, Arthur J, Klein J, Larsen C, Beck LH Jr (2021). Serine Protease HTRA1 as a Novel Target Antigen in Primary Membranous Nephropathy. J Am Soc Nephrol, 32(7), 1666-1681. ()
    19. Pleinis JM, Norrell L, Akella R, Humphreys JM, He H, Sun Q, Zhang F, Sosa-Pagan J, Morrison DE, Schellinger JN, Jackson LK, Goldsmith EJ, Rodan AR (2021). WNKs are potassium-sensitive kinases. Am J Physiol Cell Physiol, 320(5), C703-C721. ()
    20. Mishra P, Yang SE, Montgomery AB, Reed AR, Rodan AR, Rothenfluh A (2021). The fly liquid-food electroshock assay (FLEA) suggests opposite roles for neuropeptide F in avoidance of bitterness and shock. BMC Biol, 19(1), 31. ()
    21. Talsness DM, Owings KG, Coelho E, Mercenne G, Pleinis JM, Partha R, Hope KA, Zuberi AR, Clark NL, Lutz CM, Rodan AR, Chow CY (2020). A Drosophila screen identifies NKCC1 as a modifier of NGLY1 deficiency. Elife, 9. ()
    22. Beyenbach KW, Schne F, Breitsprecher LF, Tiburcy F, Furuse M, Izumi Y, Meyer H, Jonusaite S, Rodan AR, Paululat A (2020). The septate junction protein Tetraspanin 2A is critical to the structure and function of Malpighian tubules in Drosophila melanogaster. Am J Physiol Cell Physiol, 318(6), C1107-C1122. ()
    23. Jonusaite S, Beyenbach KW, Meyer H, Paululat A, Izumi Y, Furuse M, Rodan AR (2020). The septate junction protein Mesh is required for epithelial morphogenesis, ion transport, and paracellular permeability in the Drosophila Malpighian tubule. Am J Physiol Cell Physiol, 318(3), C675-C694. ()
    24. Butts AR, Ojelade SA, Pronovost ED, Seguin A, Merrill CB, Rodan AR, Rothenfluh A (2019). Altered Actin Filament Dynamics in the Drosophila Mushroom Bodies Lead to Fast Acquisition of Alcohol Consumption Preference. J Neurosci, 39(45), 8877-8884. ()
    25. Rodan AR (2019). The Drosophila Malpighian tubule as a model for mammalian tubule function. Curr Opin Nephrol Hypertens, 28(5), 455-464. ()
    26. Rodan AR (2019). Intracellular chloride: a regulator of transepithelial transport in the distal nephron. Curr Opin Nephrol Hypertens, 28(4), 360-367. ()
    27. Lakshmipathi J, Wheatley W, Kumar A, Mercenne G, Rodan AR, Kohan DE (2019). Identification of NFAT5 as a transcriptional regulator of the EDN1 gene in collecting duct. Am J Physiol Renal Physiol, 316(3), F481-F487. ()
    28. Stenesen D, Moehlman AT, Schellinger JN, Rodan AR, Krmer H (2019). The glial sodium-potassium-2-chloride cotransporter is required for synaptic transmission in the Drosophila visual system. Sci Rep, 9(1), 2475. ()
    29. Rodan AR (2018). WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium. Am J Physiol Renal Physiol, 315(4), F903-F907. ()
    30. Sun Q, Wu Y, Jonusaite S, Pleinis JM, Humphreys JM, He H, Schellinger JN, Akella R, Stenesen D, Krmer H, Goldsmith EJ, Rodan AR (2018). Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule. J Am Soc Nephrol, 29(5), 1449-1461. ()
    31. Gonzalez DA, Jia T, Pinzon JH, Acevedo SF, Ojelade SA, Xu B, Tay N, Desrivieres S, Hernandez JL, Banaschewski T, Buchel C, Bokde ALW, Conrod PJ, Flor H, Frouin V, Gallinat J, Garavan H, Gowland PA, Heinz A, Ittermann B, Lathrop M, Martinot JL, Paus T, Smolka MN, Rodan AR, Schumann G, Rothenfluh A (2018). The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol Psychiatry, 23(3), 621-628. ()
    32. Shalaby NA, Pinzon JH, Narayanan AS, Jin EJ, Ritz MP, Dove RJ, Wolfenberg H, Rodan AR, Buszczak M, Rothenfluh A (2018). JmjC domain proteins modulate circadian behaviors and sleep in Drosophila. Sci Rep, 8(1), 815. ()
    33. Pinzn JH, Reed AR, Shalaby NA, Buszczak M, Rodan AR, Rothenfluh A (2017). Alcohol-Induced Behaviors Require a Subset of Drosophila JmjC-Domain Histone Demethylases in the Nervous System. Alcohol Clin Exp Res, 41(12), 2015-2024. ()
    34. Cheng CJ, Rodan AR, Huang CL (2017). Emerging Targets of Diuretic Therapy. Clin Pharmacol Ther, 102(3), 420-435. ()
    35. Rodan AR (2017). Potassium: friend or foe? Pediatr Nephrol, 32(7), 1109-1121. ()
    36. Mahajan A, Rodan AR, Le TH, Gaulton KJ, Haessler J, Stilp AM, Kamatani Y, Zhu G, Sofer T, Puri S, Schellinger JN, Chu PL, Cechova S, van Zuydam N, SUMMIT Consortium, BioBank Japan Project, Arnlov J, Flessner MF, Giedraitis V, Heath AC, Kubo M, Larsson A, Lindgren CM, Madden PAF, Montgomery GW, Papanicolaou GJ, Reiner AP, Sundstrm J, Thornton TA, Lind L, Ingelsson E, Cai J, Martin NG, Kooperberg C, Matsuda K, Whitfield JB, Okada Y, Laurie CC, Morris AP, Franceschini N (2016). Trans-ethnic Fine Mapping Highlights Kidney-Function Genes Linked to Salt Sensitivity. Am J Hum Genet, 99(3), 636-646. ()
    37. Schellinger JN, Rodan AR (2015). Use of the Ramsay Assay to Measure Fluid Secretion and Ion Flux Rates in the Drosophila melanogaster Malpighian Tubule. J Vis Exp, (105). ()
    38. Acevedo SF, Peru y Coln de Portugal RL, Gonzalez DA, Rodan AR, Rothenfluh A (2015). S6 Kinase Reflects and Regulates Ethanol-Induced Sedation. J Neurosci, 35(46), 15396-402. ()
    39. Wu Y, Baum M, Huang CL, Rodan AR (2015). Two inwardly rectifying potassium channels, Irk1 and Irk2, play redundant roles in Drosophila renal tubule function. Am J Physiol Regul Integr Comp Physiol, 309(7), R747-56. ()
    40. Ojelade SA, Jia T, Rodan AR, Chenyang T, Kadrmas JL, Cattrell A, Ruggeri B, Charoen P, Lemaitre H, Banaschewski T, Bchel C, Bokde AL, Carvalho F, Conrod PJ, Flor H, Frouin V, Gallinat J, Garavan H, Gowland PA, Heinz A, Ittermann B, Lathrop M, Lubbe S, Martinot JL, Paus T, Smolka MN, Spanagel R, OReilly PF, Laitinen J, Veijola JM, Feng J, Desrivires S, Jarvelin MR, IMAGEN Consortium, Schumann G, Rothenfluh A (2015). Rsu1 regulates ethanol consumption in Drosophila and humans. Proc Natl Acad Sci U S A, 112(30), E4085-93. ()
    41. Ojelade SA, Acevedo SF, Kalahasti G, Rodan AR, Rothenfluh A (2015). RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate Behavioral Responses to Alcohol via Cofilin. PLoS One, 10(9), e0137465. ()
    42. Wu Y, Schellinger JN, Huang CL, Rodan AR (2014). Hypotonicity stimulates potassium flux through the WNK-SPAK/OSR1 kinase cascade and the Ncc69 sodium-potassium-2-chloride cotransporter in the Drosophila renal tubule. J Biol Chem, 289(38), 26131-26142. ()
    43. Chirinos JC, Neyra JA, Patel J, Rodan AR (2014). Hemodialysis catheter insertion: is increased PO2 a sign of arterial cannulation? A case report. BMC Nephrol, 15, 127. ()
    44. Peru Y Coln de Portugal RL, Ojelade SA, Penninti PS, Dove RJ, Nye MJ, Acevedo SF, Lopez A, Rodan AR, Rothenfluh A (2014). Long-lasting, experience-dependent alcohol preference in Drosophila. Addict Biol, 19(3), 392-401. ()
    45. Peru Y Coln de Portugal RL, Acevedo SF, Rodan AR, Chang LY, Eaton BA, Rothenfluh A (2012). Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. J Neurosci, 32(49), 17706-13. ()
    46. Rodan AR, Baum M, Huang CL (2012). The Drosophila NKCC Ncc69 is required for normal renal tubule function. Am J Physiol Cell Physiol, 303(8), C883-94. ()
    47. Rodan AR, Cheng CJ, Huang CL (2011). Recent advances in distal tubular potassium handling. Am J Physiol Renal Physiol, 300(4), F821-7. ()
    48. Rodan AR, Rothenfluh A (2010). The genetics of behavioral alcohol responses in Drosophila. Int Rev Neurobiol, 91, 25-51. ()
    49. Rodan AR, Huang CL (2009). Distal potassium handling based on flow modulation of maxi-K channel activity. Curr Opin Nephrol Hypertens, 18(4), 350-5. ()
    50. Corl AB, Rodan AR, Heberlein U (2005). Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster. Nat Neurosci, 8(1), 18-9. ()
    51. Wolf FW, Rodan AR, Tsai LT, Heberlein U (2002). High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. J Neurosci, 22(24), 11035-44. ()
    52. Rodan AR, Kiger JA Jr, Heberlein U (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J Neurosci, 22(21), 9490-501. ()
    53. Cheng Y, Endo K, Wu K, Rodan AR, Heberlein U, Davis RL (2001). Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell, 105(6), 757-68. ()
    54. Lin K, Dorman JB, Rodan A, Kenyon C (1997). daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science, 278(5341), 1319-22. ()
    55. Rodan AR, Simons JF, Trombetta ES, Helenius A (1996). N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO J, 15(24), 6921-30. ()

    Review

    1. Rodan AR (2024). Circadian rhythm regulation by pacemaker neuron chloride oscillation in flies. [Review]. Physiology (Bethesda). ()
    2. Goldsmith EJ, Rodan AR (2022). Intracellular Ion Control of WNK Signaling. [Review]. Annu Rev Physiol. ()
    3. Rodan AR (2022). Regulation of Distal Nephron Transport by Intracellular Chloride and Potassium. [Review]. Nephron, 1-9. ()

    Book Chapter

    1. Rodan AR and Jenny A (2017). WNK kinases in development and disease. In Jenny A (Ed.), Protein Kinases in Development and Disease, Curr Topics Dev Biol (123, pp. 1-47). Burlington: Academic Press.

    Commentary

    1. Rodan GA, Rodan AR (2005). The family of osteoblast transcription factors is growing. Bonekey Osteovision, 2, 12-15.

    Case Report

    1. Neyra JA, Rocha NA, Bhargava R, Vaidya OU, Hendricks AR, Rodan AR (2015). Rhabdomyolysis-induced acute kidney injury in a cancer patient exposed to denosumab and abiraterone: a case report. BMC Nephrol, 16, 118. ()

    Editorial

    1. Rodan AR (2021). Still Learning from Our Patients: Hypokalemia in Patients with Lupus Nephritis. Kidney360, 2(10), 1546-1548. ()
    2. Rodan A, Dow J (2021). Editorial overview: Molecular physiology of ion transport. Curr Opin Insect Sci, 47, vii-ix. ()
    3. Rodan AR, Huang CL (2010). An emerging role for SPAK in NCC, NKCC, and blood pressure regulation. J Am Soc Nephrol, 21(11), 1812-4. ()